This presentation premiered at WaterSmart Innovations

watersmartinnovations.com

The California Water Smart Irrigation Controller Project Results and Perspective on a Large Field Study of an Important Emerging Technology

Project Funding Provided by California Department of Water Resources

Project Team

Researchers

Peter Mayer, P.E. William DeOreo, P.E. and Matt Hayden– Aquacraft, Inc. Erin Caldwell – National Research Center

Utility Partners Presenting Today Alice Webb-Cole – MWD & 26 S. Cal Providers Jon Bauer – EBMUD Bob Eagle – Contra Costa Water District Kevin Galvin – SCWWD

Evaluation Project Management Marsha Prillwitz & Chris Brown – CUWCC

What are Smart Controllers?

Smart irrigation controllers – aka "weatherbased irrigation controllers" utilize prevailing weather conditions, current and historic evapotranspiration, soil moisture levels, and other relevant factors to adapt water applications to meet the estimated needs of plants.

Smart Water Application Technology (SWAT) definition

"Smart controllers estimate or measure depletion of available plant moisture to operate an irrigation system that replenishes water as needed while minimizing excess. A properly programmed smart controller makes irrigation adjustments throughout the season with minimal human intervention."

Two Fundamental Control Technologies

> On-Site Sensor based control

 uses real-time measurements of one or more locally measured factors to adjust irrigation timing. The factors typically considered include: temperature, rainfall, humidity, solar radiation, and soil moisture.

> Broadcast Signal based control

 receives a regular signal of prevailing weather conditions via radio, telephone, cable, cellular, web, or pager technology.

Smart Controller Grant Information

GRANT INFORMATION	MWD – S. California	EBMUD – N. California
Grant amount	\$1,778,700	\$1,660,725
Cost share amount	\$1,072,933	\$441,957
Smart controller installation goal ^[1]	5,514 controllers	2,605 controllers
Estimated 10-year potential water savings over useful lifetime of device ^[2]	27,500 AF	30,477 AF

^[1] The installation goal is a maximum ("up to") target number to be achieved.

^[2] Estimated savings were included in the original grant proposal and reflect various individual agency assumptions and rough estimates based on the types of controllers to be installed and the water demand in each area. Actual savings are anticipated to differ substantially.

Aquacraft selected to conduct impact evaluation.

Alice Webb-Cole MWD

Southern California State Grant

February 2004 – April 2007 > \$1.8 million awarded > Original estimate of 5,514 controllers 4,961 Residential Commercial 553 Direct installation and self installation Direct 1,600 3,914 Self

Initial Approach: Feb 2004 – May 2005

- > Allocated grant among 22 member agencies
- Worked with agencies to develop implementation plans
- Issued RFI to compile list of available devices

Initial Approach: Feb 2004 – May 2005 > Very Little Success

> Challenges for homeowners

- Didn't know:
 - What a smart controller was
 - What it did
 - Where to purchase

High cost compared to standard controller

Rethinking the Approach: May 2005 – Nov 2005

Workshop with agencies to identify issues

- Consumer awareness
- Availability of product
- Cost for customer
- Internal brainstorming on program implementation

Survey of 500 homeowners on awareness

Rethinking the Approach: May 2005 – Nov 2005

Developed concept of free distributions
 Modeled after ULFT distributions
 Sought landscape industry partners
 Issued RFP to purchase small quantity of controllers

Developed forms and promotional materials

First Free Exchange Event Nov 2005

- Partnerships
 - LADWP
 - Armstrong's Garden Center
- Provided programming training
- Exchanged 120 smart controllers

First Free Exchange Event Nov 2005 - Marketing

Sign up for a **FREE*** "smart" controller for your sprinklers

Stop water waste in one simple step with a free "smart" controller that takes the guesswork out of your lawn watering schedule. The latest in sprinkler system technology, these controllers can tell if it is sunny or rainy and water your landscape accordingly.

It's easy to participate. Log on to bewaterwise.com or call 800-422-9426 to reserve your free controller. You'll be given a confirmation number and a time to pick up your new controller (retail value \$395) and drop off your old one. Residents without an advance reservation will be

turned away. Supplies are limited. Must show proof of residency in the Los Angeles Dept. of Water & Power service area to participate.

- Funding sources and sponsoring
- 2000 Proposition 13 through California Dept. of Water esources
- Metropolitan Water District of Southern California Los Angeles Dept. of Water &

bewaterwise.com

Return old controller and pick-up new controller Sat., Nov. 5, only "Advance reservations only, and supplies are Inited. Any warranties on the controller are limited to those provided by the manufactures Other conditions apply

therSet Company

Aller Timer WSR411

First Free Exchange Event Nov 2005 – Old Controllers

Free Exchange Events Nov 2005 – Nov 2007

- Methods tested
 - Walk-up
 - Drive-through
 - California-Friendly Landscape Training
 - Community College
 - Internet sign-up

Rebate Programs Jul 2005 – Dec 2006

- Residential rebates
 - Six agencies
 - 195 rebates
- Commercial rebates
 - Seven agencies
 - 400 rebates

Direct Installation Programs Jul 2005 – Feb 2007

- > Residential direct-installations
 - Six agencies
 - 910 controllers
- Commercial direct-installations
 - Nine agencies
 - 654 controllers

Southern California Results

	Original Estimates	Actual Results
Residential self-install	3,520	2,665
Residential direct-install	1,441	910
Commercial self-install	394	400
Commercial direct-install	159	654
Totals	5,514	4,629

Southern California Results

February 2004 – October 2008 Completed 4,629 controllers Residential 3,575 Commercial 1,054 Direct installation and self installation Direct 1,564 3,065 Self

Implementation Methods

Commercial

- Direct-installation 60%
- Rebate or voucher 40%

> Residential

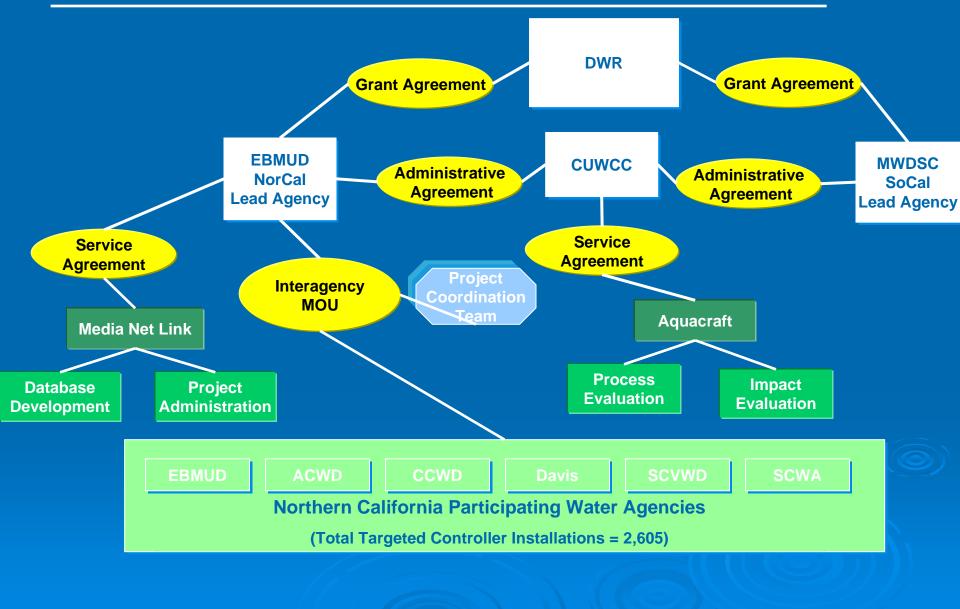
- Free distributions 70%
- Direct-installation 25%
- Rebate or voucher

5%

Results – Public Awareness

Increased awareness

- 15% in 2005
- 38% in 2007


bewaterwise.com

The Metropolitan Water District and the Family of Southern California Water Agencies Jon Bauer EBMUD

Water Smart Irrigation Controller Program Northern California Program Results and Perspectives

Northern California Weather-Based Irrigation Controller Program

Elements Common to Northern California Programs

> Targeted at higher water users

> All are variations on a rebate incentive

Strong educational or follow up component

Northern California WSIC Installations by Agency

		o 12 ions	13 to 24 Stations		25 Stations and up		Number	Number
	Direct Install	Self Install	Direct Install	Self Install	Direct Install	Self Install	Controllers Installed	Controllers Allocated
EBMUD		442		297		63	802	1305
Alameda	6	47	20	37	1	3	114	124
Contra Costa		56		60		25	141	149
Santa Clara	66	12	40	200	3	137	458	657
Sonoma	88	40	19	26	4	21	198	291
Total	160	5 97	<mark>79</mark>	<mark>62</mark> 0	8	<mark>24</mark> 9	1713	2605

WaterSmart Irrigation Controller Program

Targets both high-use residential and commercial customers

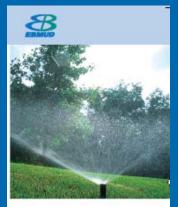
- Retrofit only (not new construction)
- > We chose a voucher as the financial incentive

Marketed directly to customers (direct mail) and key influencers (landscape professionals, distributors, manufacturers)

Pays up to 50% of controller cost

Maximum voucher amounts based on irrigation use (Summer – Winter use for mixed meters)

Irrigation Use (gpd)	Max Voucher Amount
750 to 2,999	\$300
3,000 to 5,999	\$600
6,000 and above	\$1,200


Effective marketing materials developed in cooperation with the Irrigation Association Smart Water Application Technology (SWAT) Initiative

Keep your landscape looking great and save money on your water bill.

Out you know that during the neightion taboon it is common for odd fabrianed sprinkler times to apply twice the amount of water needed by plants? That's help improving oundoor watering efficiency is one of the best and access wan pool can reduce your overall water access—and save mones. And one of the best ways to do as its to install a littler distant imposed controller in place of your existing times. Its imposed controller in place of your existing times. Its

Qualifying products and purchase information

water

> 4% response from three direct mailings to 23,000 customers using more than 750 gpd of irrigation

- Issued ~1200 vouchers
- > Only 20% of vouchers issued were redeemed for controllers

Voucher Program proved complicated and costly to administer for water agency, customer, and distributor.

> Vouchers didn't provide strong incentive for contractors.

- Confusion over value of voucher
 - \$300, \$600, \$1,200 maximum amounts
 - Value only 50% up to maximum
 - One reason we think some customers didn't redeem voucher (along with a complex preapplication process)

Revised EBMUD WSIC Program

- Beginning January 1, 2008 the program was revised and simplified.
- The biggest revision was that the financial incentive was changed from a voucher to a rebate.
- > Also, the application process was simplified to remove the pre-application.
- Customers can not get rebate until they have an inspection.

Revised EBMUD WSIC Program

New consolidated brochure
 Article in Customer Pipeline (bill insert)
 Point of Purchase displays
 Improved web page
 Ads in print media

Revised EBMUD WSIC Program

Based on the account's average IRRIGATION water use over the past three years.

Irrigation Use (gpd)	Rebate Amount
250 to 749	\$100
750 to 2,999	\$250
3,000 to 5,999	\$350
6,000 and above	\$500

Note: Special Rules apply when replacing 2+ controllers.

EBMUD WSIC Overall Goals and Activity

Sector	1 to 12	13 to 24	= or > 25	Installations Complete
Residential	175	149	10	334
Commercial	267	148	53	468
Total	442	297	<mark>63</mark>	<mark>802</mark>

What seems to work . .

- When we communicate meaningful benefits that are understood by the customer using effective marketing materials
- > Add in a financial rebate incentive
- And follow up to verify the controller is installed and programmed properly . . .

•	14
	0.
	H
	3

For program information contact EBMUD Project Managers:

Jon Bauer: jbauer@ebmud.com

Oſ

Scott Sommerfeld: sommerfeld:

Bob Eagle CCWD

CCWD's 'Smart' Programs

Smart Sprinkler Timer Rebate

- Single Family Residential
 - Rebate is \$25 per active station
 - Targeted high users by summer to winter difference

Smart Irrigation Controller Rebate

- CII/Multi-family Customers
 - Rebate is \$40 per active station
 - Targeted high users via Water Budget program

Program Process

Smart Sprinkler Timer

- Pre-inspection
 - Residential Survey Program
- Post-inspection
 - Survey System
 - Program Timer

Smart Irrigation Controller

- Pre-inspection
 - Verify Landscape/Irrigation Quality
- Post-Inspection
 - Verify Installation
 - Offer CCWD's Scheduling Services

Program Adjustments

Single Family Residential

- Changed Informational Material in Response to Customer Feedback
- > CII/Mult-family Customers
 - Revised Some Requirements in Response to Landscaper Feedback

What seems to work...

Seminars

- Benefits of Smart Timers
- Manufacturers' Display Tables
- Scheduling Based on Results of Thorough System Evaluation

Promoting Needs of Customer

Recommendations...

- > Target High Users
- Materials That Provide Solutions to Customers' Concerns
- Train Installers to Properly Schedule Units
- Promote Importance of Effective Water Management

For program information contact CCWD Program Manager:

Bob Eagle

beagle@ccwater.com

Kevin Galvin SCVWD

Santa Clara Valley Water District

SCVWD's WSIC Installation Program

> WSIC Installation Program Design

- Single Family and CII Program
 - Pre-Installation survey required for each participant
 - Two controller types: Signal Based and Non-Signal Based
 - 50% participant co-payment for controller cost
 - Direct Installation or Self Installation options

> WSIC Installation Program Marketing

- Utilize residential and CII survey program data to mail to "pre-qualified" sites
- Direct mail sent to retailer's list of top water users

WSIC Installation Program Requirements

Minimum irrigated landscape size

- Resi: 1,600 sq ft
- CII: 1 acre

Minimum number of active stations

- Resi: 6 stations
- CII: 18 stations
- Functioning Irrigation System
 - Determined by pre-installation survey
- Co-Payment
 - Resi: \$50-\$100 per controller
 - CII: \$200-\$275 per controller

WSIC Installation Program Process

Pre-Installation Survey Verify site meets program criteria Inventory of landscape by station Direct Installation Installation of new WSIC Programming of WSIC, verify that stations are working properly Self-Install WSIC Workshop Review survey forms Program controller / Explain installation instructions

SCVWD's WSIC Rebate Program

> WSIC Rebate Program Design

- CII Program
- Pre-Installation survey required for each participant
- Minimum criteria to qualify
- Qualifying controllers must have published SWAT testing results
- Rebates ranging from \$300 to \$1,100 per controller

SCVWD's WSIC Rebate Program

WSIC Rebate Program Perceived Benefits

- Meeting Demand
- Program Flexibility
- Adaptability for New Technology
- Marketing
- Manageability
- Minimize Liability Perceptions

What seems to work...

- Checking irrigation system efficiency
- Working with landscape contractors and property management companies
- Cross promotion of WSIC rebate program with rebates for other irrigation hardware upgrades


For program information contact SCVWD Program Manager:

Kevin Galvin

kgalvin@valleywater.org

Program Evaluation Project

> Process Evaluation
> Impact Evaluation
> Customer Survey
> Agency Survey
> Water Savings Analysis
> Benefit-Cost Analysis

Preliminary results presented today.

Customer Satisfaction Survey

 Mail survey sent to all participants in both Northern and Southern California
 3,455 surveys mailed out
 1,351 usable surveys returned
 39% response rate

Overall Satisfaction

Overall, how satisfied are you with the performance of the smart controller(s)?	Percent	Number
very satisfied	45.9%	N=612
somewhat satisfied	33.4%	N=445
somewhat dissatisfied	9.5%	N=127
very dissatisfied	8.5%	N=113
don't know	2.8%	N=37
Total	100.0%	N=1334

Type of Property

Is the property where the smart controller was installed a	Percent	Number
single-family private residence	95.6%	N=1222
multi-family housing complex	1.6%	N=20
park, playground or median	1.3%	N=17
	4 50/	
commercial, industrial or institutional property	1.5%	N=19
Total	100.0%	N=1278

Perceived Benefits

Which, if any, of the following do you perceive as a benefit of having a smart		
controller?	Percent	Number
Saves time and effort	52.7%	N=661
Makes programming the settings easier	33.5%	N=420
Saves money	49.0%	N=614
Water-efficient	80.7%	N=1012
Cost-efficient	37.4%	N=469
Improves the health of the landscape	34.9%	N=438
Other	7.1%	N=89
Total*	100.0%	N=1254

*Actual totals will equal more than 100% as respondents could give more than one answer

Is Programming Correct?

How confident are you that the irrigation schedule set for your smart controller is correct?	Percent	Number
very confident	39.2%	N=447
somewhat confident	40.0%	N=456
not very confident	16.1%	N=183
don't know	4.7%	N=53
Total	100.0%	N=1139

Impact Analysis – Water Use

> At least 1 full year of pre-installation water consumption

- At least 1 full year of post-installation water consumption
- Weather data for concurrent period CIMIS and NCDC - >70 different weather stations
- > Site specific area

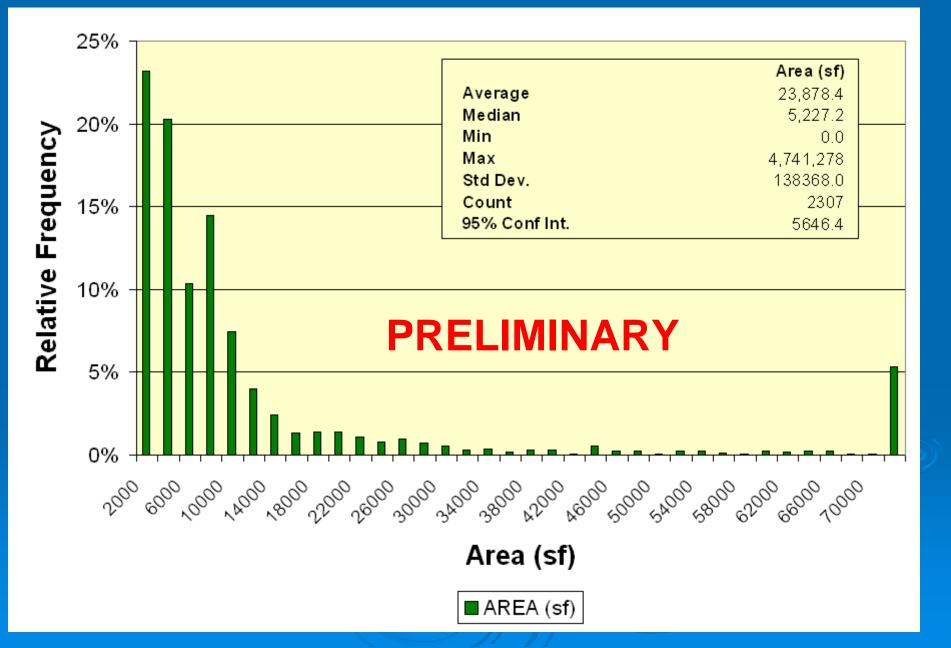
Weather-Corrected Water Use

- Site Application Ratio (SAR)= Actual application / Theoretical application requirement
- SAR Calculated for Pre- and Post- year for each site
- $> \Delta$ SAR = Post-SAR Pre-SAR

> Δ SAR/ Pre-SAR = weather corrected %
change in usage

Site Application Ratio (SAR) SAR = Actual application (in.) / Theoretical application requirement (80% of Net ET) (in.)

SAR is a measurement of how much water was actually applied to the site, compared with what "should" have been applied based on climate data.


SAR "corrects" for differences in climate and in landscape size and allows for a reasonable measurement of weatheradjusted water savings and comparison between sites.

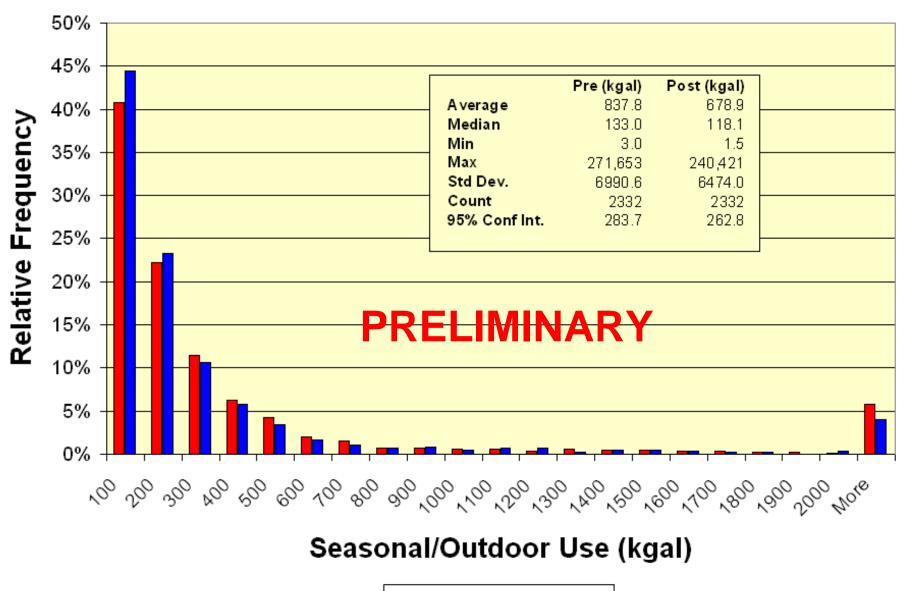
Analysis Sample Size

2,332 Sites (with minimum data requirements)3,008 Smart Controllers installed on 2,332 sites2,122 Sites (with necessary data for pre- postanalytic comparisons)

1,738 sites in S. California384 sites in N. California

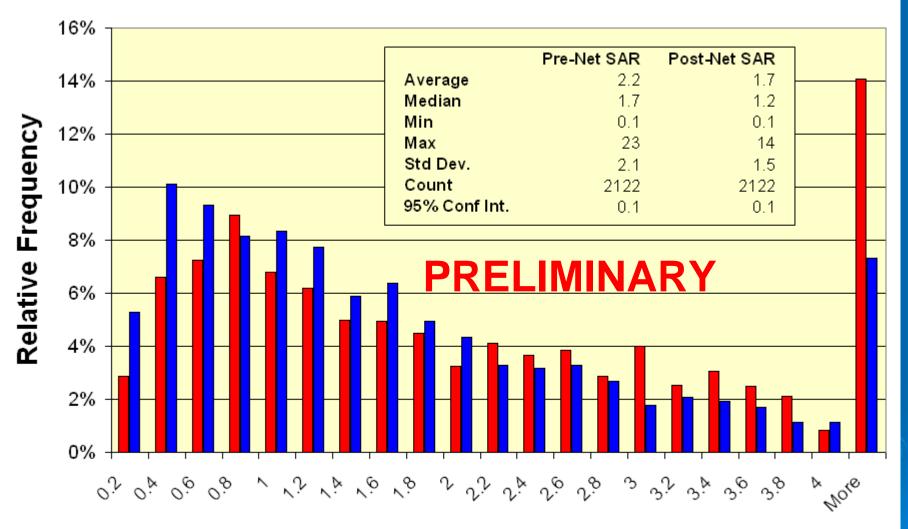
Landscape Area at Smart Controller Sites

Climate Conditions Pre- and Post-Installation

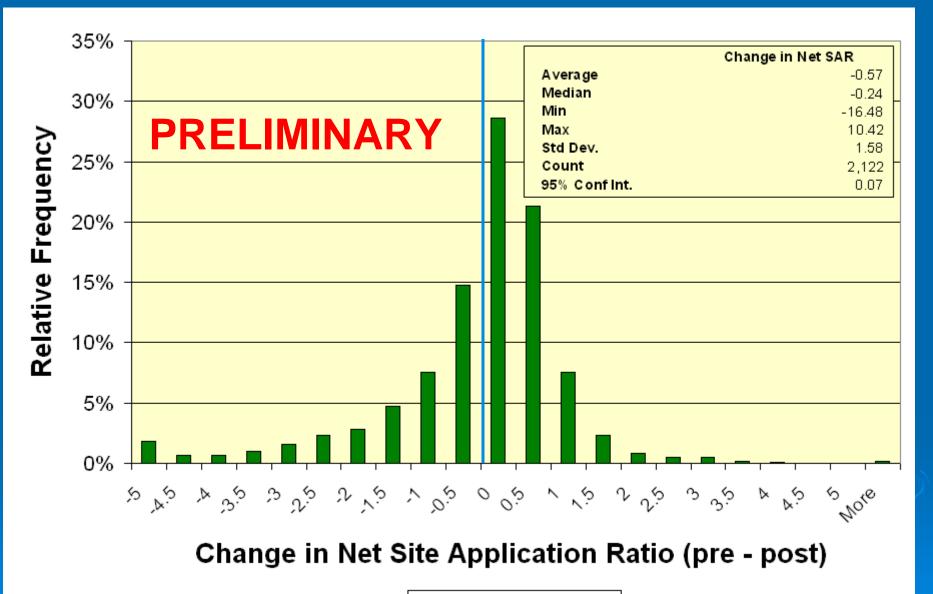

	Pre-	Post-	Pre-	Post-
	ETo	ETo	Net ET	Net ET
	(inches)	(inches)	(inches)	(inches)
Total	47.7	50.6	37.2	42.0
S. Cal	48.1	51.6	39.5	44.5
N. Cal	46.0	45.9	26.1	29.5

Averaged over all CIMIS and NCDC stations used for the study.

Generally it was slightly hotter and drier in the post-installation year.


PRELIMINARY

Pre- and Post- Seasonal Water Use


Pre-Use 🗖 Post-Use

Pre- and Post- Net Site Application Ratio

Net Site Application Ratio (%)

Pre-Net SAR Dost-Net SAR

Change in Net SAR

Increases and Decreases In Usage After Smart Controller

	N. Cal	S. Cal	Total
Decrease in SAR	85.4%	56.3%	61.6%
No Change in SAR (95% bounds)	1.8%	10.2%	8.7%
Increase in SAR	12.8%	33.5%	29.7%
Total	100%	100%	100%

PRELIMINARY

% Change – All Sites

	N (sample size)	Range of 95% Conf. Interval
All Sites	2,122	-23.5% - -27.4%

PRELIMINARY

Corrected for changes in ET and Precipitation

% Change – S. Cal Sites

	N (sample size)	Range of 95% Conf. Interval
All Sites	2,122	-23.5% - -27.4%
S. Cal Sites	1,738	-15.4% - - 17.0%

% Change – N. Cal Sites

	N (sample size)	Range of 95% Conf. Interval
All Sites	2,122	-23.5% - -27.4%
S. Cal Sites	1,738	-15.4% - - 17.0%
N. Cal Sites	384	-21.5% - -68.8%

Determining Factors that Influence Water Use Change

- Analysis of variance (ANOVA) tests performed to determine statistically significant variables for explaining water use.
- Factors with p-values of less than 0.05 (95% confidence level) were considered statistically significant.
- Only factors shown to be significant were selected for multiple-linear regression models.

Factors that Influence Savings at 0.05 Significance

- Pre-Installation Watering Patterns i.e. what % of ET was applied to begin with
- Region (S. Cal or N. Cal) programmatic differences
- Installation method self installed* or professionally installed
- Climate zone Coastal, Inland, or Foothill
- Make and model of smart controller (sometimes significant) PRELIMINARY

*Self installed means the customer was responsible for the installation, but could have had someone else do it.

Factors that did <u>Not</u> Influence Savings at 0.05 Significance

Type of site – residential vs. non-residential

PRELIMINARY

Researchers are still investigating sensor vs. signal based controllers to determine if this is a significant factor in water savings.

Modeling Results

Independent variables examined:

- Pre-SAR (did this site over irrigate to begin with)
- Region (S. Cal vs. N. Cal)
- Climate zone (Coastal, Inland, Foothill)
- Controller make and model (anonymous)
- Installation method (self vs. professional)

Modeling Results Cont.

R	R Squared	Adjusted R Squared	Std. Error of the Estimate	Degrees of Freedom	F	P- value
0.731	0.535	0.531	1.0863	2110	141.5	0.000

Predictors: (Constant), Pre-SAR, N.Cal (compared to S.Cal), Professional install (compared to self), Inland and foothill climate zone (compared to coastal), controller make and model (compared to N1)

Dependent Variable: Δ SAR

B (Beta) Coefficients

The B coefficient present the magnitude of the effect of the different independent variables in the model. **PRELIMINARY**

In this case, B represents the magnitude in % SAR change.

PRELIMINARY Modeling B Coefficients

Variable	В	Std. Error	t	Sig.
(Constant)	0.859	0.069	12.45	0.000
Region N Cal	-0.194	0.097	-2.002	0.045
Install - Pro	0.198	0.094	2.102	0.036
Inland – Clim. Zone	-0.248	0.067	-3.734	0.000
Foothill–Clim. Zone	-0.019	0.098	-0.003	0.846
Controller A1	-0.098	0.075	-0.022	0.193
Controller B1	-0.264	0.117	-2.262	0.024
Controller B3	0.066	0.138	0.477	0.633
Controller C1 – K1			2	

Preliminary Conclusions

- Smart controllers reduce water use particularly at sites that have historically over-irrigated.
- > Weather adjusted change in usage was measured to be -25.5% across all 2,122 sites.

Self installed controllers reduced water use more compared with professionally installed controllers.

Preliminary Conclusions 2

- Climate zone (Coastal, Inland, Foothill) influenced changes in usage. Additional analysis is required.
- Most controllers appear capable of reducing demand.
- Specific controller technology is less important than pre-installation irrigation habits.

Preliminary Conclusions 3

Smart control technology appears to have tremendous potential for managing outdoor urban water demands.

Results presented here are PRELIMINARY and are subject to change as additional work is done.

Project final report will be available in the first quarter of 2009.

Final Report Available in 2009

Final presentation available at <u>www.aquacraft.com</u>

Project report available in early 2009

> Agencies will monitor performance of WBICs for another 5 years.

mayer@aquacraft.com